Рус Eng During last 365 days Approved articles: 1908,   Articles in work: 302 Declined articles: 802 
Library
Articles and journals | Tariffs | Payments | Your profile

Back to contents

Study of chaotic broadband signals in the context of hydroacoustics problems
Butusov Denis Nikolaevich

PhD in Technical Science

Associate Professor, Ulyanov (Lenin) St. Petersburg State Electrotechnical University "LETI"

197376, Russia, Saint Petersburg, ul. Professora Popova, 5

dnbutusov@etu.ru
Другие публикации этого автора
 

 
Karimov Timur Iskandarovich

Assistant, Ulyanov (Lenin) St. Petersburg State Electrotechnical University "LETI"

197376, Russia, Saint Petersburg, ul. Professora Popova, 5

tikarimov@etu.ru
Ostrovskii Valerii Yur'evich

Graduate Student, Ulyanov (Lenin) St. Petersburg State Electrotechnical University "LETI"

197376, Russia, Saint Petersburg, ul. Professora Popova, 5

vyostrovskii@etu.ru
Другие публикации этого автора
 

 
Kaplun Dmitrii Il'ich

PhD in Technical Science

Assistant Professor, Ulyanov (Lenin) St. Petersburg State Electrotechnical University "LETI"

197376, Russia, Saint Petersburg, ul. Professora Popova, 5

dikaplun@etu.ru

Abstract.

The most common type of sounding signals of sonar systems are broadband linear-frequency-modulated signals (LFM). Due to the use of such signals it is possible to increase the range and resolving power of hydroacoustic devices, but this does not solve the problem of mutual interference of pulses. One type of broadband signals are chaotic oscillations, which theoretically are able to become an alternative to chirp signals due to increased resistance to crosstalk. The paper compares chaotic and chirp signals by simulating their passage in an aqueous medium. Chaotic signals generated by systems with different numbers of basins of attraction are investigated. The study shows that chaotic signals are more resistant to mutual interference, and also experience less attenuation when propagating in an aqueous medium compared to the types of signals currently used. The stability of chaotic broadband signals to interference and attenuation correlates with the number of basins of attraction of the attractor of the generating chaotic system. Based on the results of the work, it can be concluded that the chaotic signals are used as probing pulses of sonar systems.

Keywords: linear-frequency modulation, active sonar, cross-talk problem, simulation, hydroacoustics, chaotic system, dynamical chaos, wideband signal, basin of attraction, correlation analysis

DOI:

10.7256/2454-0714.2017.4.24785

Article was received:

24-11-2017


Review date:

02-12-2017


Publish date:

11-01-2018


This article written in Russian. You can find full text of article in Russian here .

References
1.
Ehrenberg J. E., Torkelson T. C. FM slide (chirp) signals: a technique for significantly improving the signal-to-noise performance in hydroacoustic assessment systems //Fisheries Research. – 2000. – T. 47. – №.
2.
– S. 193-199. 2. Mosolov S.S., Sknarya A.V., Tutynin E.V. Zalogin N. N. Nekotorye aspekty i perspektivy primeneniya slozhnykh signalov v gidroakustike //Sbornik trudov IV Vserossiiskoi konferentsii «Radiolokatsiya i svyaz'».-Moskva,2010.-S. 170-174.
3.
Alapati N. K., Kirklin R. H., Etter P. C. Analysis of Chaotic Waveforms for Application to Active Sonar Systems //Radix Systems, Inc., 1993. – №. TR-93-081.
4.
Harman S. A., Fenwick A. J., Williams C. Chaotic signals in radar? //Radar Conference, 2006. EuRAD 2006. 3rd European. – IEEE, 2006. – S. 49-52.
5.
Meng Q., Yao F., Wu Y. Review of crosstalk elimination methods for ultrasonic range systems in mobile robots //Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. – IEEE, 2006. – S. 1164-1169.
6.
Urick R. J. Principles of underwater sound for engineers. 3rd ed.– Tata McGraw-Hill Education, 1983.
7.
Lawrence E. K. et al. Fundamentals of acoustics //New yorks: John wileys, 2000. – S. 151-169.
8.
Domingo M. C. Overview of channel models for underwater wireless communication networks //Physical Communication. – 2008. – T. 1. – №. 3. – S. 163-182.
9.
Fisher F. H., Simmons V. P. Sound absorption in sea water //The Journal of the Acoustical Society of America. – 1977. – T. 62. – №. 3. – S. 558-564.
10.
Borenstein J., Koren Y. Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance //IEEE Transactions on Robotics and automation. – 1995. – T.
11.
– №. 1. – S. 132-138. 11. Masek V. et al. Rapid obstacle sensing using mobile robot sonar //Mechatronics. – 2000. – T. 10. – №. 1. – S. 191-213.
12.
Sprott J. C. Some simple chaotic flows //Physical review E. – 1994. – T. 50. – №. 2. – S. 647-650.
13.
Butusov D. N., Karimov A. I., Andreev V. S. Computer simulation of chaotic systems with symmetric extrapolation methods //Soft Computing and Measurements (SCM), 2015 XVIII International Conference on. – IEEE, 2015. – S. 78-80.
14.
Kaevitser V. I. i dr. Razrabotka i rezul'taty ispytanii gidroakusticheskogo kompleksa dlya issledovaniya dna shel'fovoi zony Arkticheskikh morei //Zhurnal radioelektroniki. – 2016. – №. 11. – S. 1-1.
15.
Demidov A. I. i dr. Aktivnyi gidrolokator so sverkhshirokopolosnymi zondiruyushchimi signalami //Tsifrovaya obrabotka signalov. – 2012. – №. 2. – S. 54.
16.
Salama K. N., Ozoguz S., Elwakil A. S. Generation of n-scroll chaos using nonlinear transconductors //Circuits and Systems, 2003. ISCAS'03. Proceedings of the 2003 International Symposium on. – IEEE, 2003. – T. 3. – S. 3-3.
17.
Miranda R., Stone E. The proto-Lorenz system //Physics Letters A. – 1993. – T. 178. – №. 1-2. – S. 105-113