' ' nbpublish.com
Eng During last 365 days Approved articles: 1676,   Articles in work: 348 Declined articles: 379 
Library

Back to contents

Modern Education
Reference:

Internal algebraic understanding of strategy as the means of organization of teaching mathematics

Melnikov Yurii Borisovich

PhD in Physics and Mathematics

Docent, the department of Applied Mathematics, Ural State University of Economics Docent, Institute of Radioelectronics and information Technologies, Ural Federal University named after the first President of Russia B. N. Yeltsin

620144, Russia, Yekaterinburg, 8 Marta Street 62, office #476

UriiMelnikov58@gmail.com

 

 
Privalov Sergei Mikhailovich

External Doctoral Candidate, Ural Federal University named after the first President of Russia B. N.Yeltsin

620002, Russia, Sverdlovskaya oblast', g. Ekaterinburg, ul. Mira, 19

smprivalov@gmail.com

DOI:

10.25136/2409-8736.2019.4.31402

Review date:

17-11-2019


Publish date:

24-11-2019


Abstract: The object of this research is the process of teaching mathematics. The subject of this research is the strategy of teaching. The author suggest and examines the internal algebraic perception of teaching strategy viewed as the mechanism for creating the teaching plan. Earlier on, Y. B. Meknikov has proposed the interpretation of algebraic approach towards modelling as the system consisting of three components: 1) system of basic models; 2) system of typical transformations and standard combinations of models; 3) approximation mechanism intended for a similar understanding of the model in form of a result of typical transformations and standard combinations of basic models. The internal algebraic understanding of the strategy is distinguished by the fact that basic elements represent the components of the strategy, rather than the external perception, where the basic elements are a part of other strategies. The research carries a theoretical character, though some of its results have already been implemented into educational practice in the Ural State University of Economics. The theoretical framework relies on the modelling theory of Y. B. Melnikov, which is based on the formal-constructive interpretation of the model. The scientific novelty primarily consists in structuring of model of the strategy as a mechanism for creating plan of action, as well as distinction of the postulates of strategy that help to define the typical transformations and standard combinations of the plans of action. The author proposes an internal algebraic approach towards the concept of strategy, where the algebraic concept means a system consisting of three components: a) system of basic elements; b) system pf typical transformations and standard combinations of the elements; c) approximation mechanism intended for understanding of strategy in form of a result of application of typical transformations and standard combinations of the basic elements.


Keywords: teaching methods, learning theory, teaching mathematics, reference model, activity algorithm, algebraic approach, goal of activity, plan of activity, strategy of activity, activity management
This article written in Russian. You can find full text of article in Russian here .

References
1.
Titova, S. V. Mobil'noe obuchenie segodnya: strategii i perspektivy / S. V. Titova // Vestnik Moskovskogo universiteta. Seriya 19: lingvistika i mezhkul'turnaya kommunikatsiya. 2012. 1. S. 923.
2.
Mel'nikov, Yu. B. Uchebnaya literatura po matematike kak instrument upravleniya deyatel'nost'yu obuchaemykh / Yu. B. Mel'nikov, N. V. Mel'nikova, A. A. Knysh // V sb. Nekotorye aktual'nye problemy sovremennoi matematiki i matematicheskogo obrazovaniya, Rossiiskii gosudarstvennyi pedagogicheskii universitet im. A.I.Gertsena. 2018. S.196198.
3.
Golitsyna, I. N. Effektivnoe upravlenie uchebnoi deyatel'nost'yu s pomoshch'yu komp'yuternykh informatsionnykh tekhnologii / I. N. Golitsyna // Obrazovatel'nye tekhnologii i obshchestvo. 2003. T. 6, No 2. S. 7783.
4.
Mel'nikov,Yu.B. Matematicheskoe modelirovanie: struktura, algebra modelei, obuchenie postroeniyu matematicheskikh modelei:Monografiya [Tekst] / Yu.B.Mel'nikov.‑ Ekaterinburg: Ural'skoe izdatel'stvo, 2004, 384s.
5.
Testov, V. A. Strategiya obucheniya matematike / V. A. Testov. M. : Tekhnologicheskaya Shkola Biznesa, 1999.
6.
Testov, V. A. Strategiya obucheniya v sovremennykh usloviyakh / V. A. Testov // Pedagogika. 2005. No
7.
S. 1218. 7.Modelirovanie protsessa obucheniya personala organizatsii i formirovanie strategii upravleniya obucheniem personala / A. Kolodin, V. I. Fedyanin, L. V. Bryantseva, M. Yu. Kvashnina, G. A. Spichkin // Sovremennye tekhnologii obespecheniya grazhdanskoi oborony i likvidatsii posledstvii chrezvychainykh situatsii. Sbornik statei po materialam Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem. Voronezhskii institut Gosudarstvennoi protivopozharnoi sluzhby Ministerstva Rossiiskoi Federatsii po delam grazhdanskoi oborony, chrezvychainym situatsiyam i likvidatsii posledstvii stikhiinykh bedstvii (Voronezh), 2013. S. 322325.
8.
Fomenko, L. B. Obuchenie studentov tekhnicheskogo vuza strategiyam samostoyatel'noi raboty s ispol'zovaniem novykh informatsionnykh tekhnologii: dis. ... kand. nauk / Udmurtskii gosudarstvennyi universitet. 2006. 18s.
9.
Klimova, E. M. Kognitivnye strategii prinyatiya resheniya shkol'nikami i ikh vzaimosvyaz' s uspeshnost'yu obucheniya: dis. ... kand. nauk / Moskovskii gosudarstvennyi oblastnoi universitet. 2008. 22s.
10.
Obrazovatel'nye strategii i tekhnologii obucheniya pri realizatsii kompetentnostnogo podkhoda v pedagogicheskom obrazovanii s uchetom gumanitarnykh tekhnologii: metod. rekom. / Pod red. B. V. Avvo, A. Akhayan, A., E. S. Zair-Bek i dr. SPb.: Izd-vo RGPU im. A.I. Gertsena, 2008. 108s.
11.
Algebraicheskii podkhod k avtomaticheskoi generatsii testov dlya ob''ektno-orientirovannykh programm: Otchet o NIR/NIOKR / Moskovskii gosudarstvennyi universitet im. M.V.Lomonosova; Executor: N.N. Mansurov, I.V. Abramov, D.Yu. Zhukov i~dr.: 1997.
12.
Makhortov, S. Algebraicheskii podkhod k issledovaniyu i optimizatsii baz znanii produktsionnogo tipa / S.D. Makhortov, S.L. Podval'nyi // Informatsionnye tekhnologii. 2008. 8. S. 5560.
13.
Serdyukova, N. A. Algebraicheskii podkhod k sistemnomu predstavleniyu znanii v intellektual'noi avtomatizirovannoi sisteme obucheniya i kontrolya / N. A. Serdyukova, V. I. Serdyukov, L. V. Glukhova // Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta. 2015. No 3-2 (33-2). S. 328335.
14.
M. Chukalina, I Polyakov, A. Terekhin, A. Ingacheva, A. Buzmakov, I Yakimchuk, I Varfolomeev, and D. Nikolayev. Large Scale Tomographic Reconstruction Algorithm Based on Algebraic Approach. In Verikas, A and Nikolaev, DP and Radeva, P and Zhou, J, editor, ELEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2018), volume 11041 of Proceedings of SPIE, 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA, 2019. Univ Elect Sci & Technol China; Halmstad Univ, SPIE-INT SOC OPTICAL ENGINEERING. 11th International Conference on Machine Vision (ICMV), Munich, GERMANY, NOV 01-03, 2018.
15.
Rudolf Berghammer, Gunther Schmidt, and Michael Winter. Cryptomorphic topological structures: A computational, relation-algebraic approach. JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING, 102:1745, JAN 2019.
16.
Marcus De Chiffre, Narutaka Ozawa, and Andreas Thom. Operator algebraic approach to inverse and stability theorems for amenable groups. MATHEMATIKA, 65(1):98118, 2019.
17.
Nesmeev, Yu. A. Ob odnom podkhode k resheniyu algebraicheskikh uravnenii 3-i i 4-i stepenei / Yu. A. Nesmeev // Vestnik Tomskogo gosudarstvennogo universiteta. matematika i mekhanika. 2011. 1 (13). S. 2630.
18.
Mel'nikov,Yu.B. Algebraicheskii podkhod k matematicheskomu modelirovaniyu i obucheniyu matematicheskoi i predmatematicheskoi deyatel'nosti / Yu.B.Mel'nikov, K.S.Potorochina/ Yaroslavskii pedagogicheskii vestnik, 2010, 3: Fiziko-matematicheskie i estestvennye nauki.‑ s.19-24.
19.
Mel'nikov,Yu.B. Otnoshenie k matematicheskim fenomenam i ikh vliyanie na obuchenie matematike / Yu. B. Mel'nikov, S.A. Shitikov, S.G. Sintsova // Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta.2017. 8 (185).S. 108113