Eng During last 365 days Approved articles: 2057,   Articles in work: 298 Declined articles: 785 
Library

Back to contents

Software systems and computational methods
Reference:

Cyclographic modeling of solutions of geometric optics problems on the plane
Panchuk Konstantin Leonidovich

Doctor of Technical Science

Professor, Department of Engineering Geometry and CAD, Omsk State Technical University

644050, Russia, Omskaya oblast', g. Omsk, ul. Pr. Mira, 11, aud. 8-513

Panchuk_KL@mail.ru
Lyubchinov Evgenii Vladimirovich

Lecturer, Department of Engineering Geometry and CAD, Omsk State Technical University

644050, Russia, Omskaya oblast', g. Omsk, ul. Pr. Mira, 11, aud. 8-518

lubchinov.e.v@yandex.ru

Abstract.

The subject of research is the optical transformations of pairs of basic geometric objects on a plane that simulate various sources of radiation. In the general case, when solving problems of geometric optics on a plane, the task of transforming one beam of rays into another, for example, converting rays of a point source into a system of parallel rays, is distinguished. Such tasks require the creation of a relatively simple method based on the laws of geometrical optics and allowing one to obtain reflective lines of a certain geometry corresponding to the given initial data. Obtaining a reflective line for different combinations of central, parallel and scattered direct beam transformations in this work is based on the cyclographic display method. The method is based on the optical properties of a cyclographic model of a spatial curve of a line and makes it possible to obtain reflective curves of various shapes during optical transformations of straight beams. The use of this method in building a source-receiver system makes it possible to select a receiver (or source) from a variety of receivers (sources) with the same reflector line. The study showed that the cyclographic mapping method makes it relatively easy to obtain reflective lines during optical transformations of various beam beams, while the analytical algorithm makes it possible to obtain parametric equations of this line. The results of the work can be used in the design of various optical systems in the antenna, laser and lighting engineering industries.

Keywords: evolvent, reflective lines, cyclographic mapping, pencil of rays, geometrical optics, Optical transformations, evolute, ruled surface, intersection line, spatial visualization

DOI:

10.7256/2454-0714.2018.4.25745

Article was received:

17-03-2018


Review date:

04-04-2018


Publish date:

10-01-2019


This article written in Russian. You can find full text of article in Russian here .

References
1.
Kornblit, S. SVCh optika. Opticheskie printsipy v prilozhenii k konstruirovaniyu SVCh antenn : per. s angl. / pod red. O. P. Frolova. M. : Svyaz', 1980. 360 s.
2.
Kobak, V. O. Radiolokatsionnye otrazhateli / V. O. Kobak ; pod red. O. N. Leont'evskogo. M. : Sov. radio, 1975. 248 s.
3.
Yurkov, V. Yu. Osnovy teorii i rascheta svetonapravlyayushchikh konstruktsii : monogr. / V. Yu. Yurkov, S. N. Litunov. Omsk: Izd-vo OmGTU, 2015. 112 s.
4.
Knysh, L. I. Vliyanie geometrii kontsentratora na energeticheskie pokazateli sistemy priema kosmicheskoi solnechnoi energeticheskoi ustanovki / L. I. Knysh // Kosmicheskaya nauka i tekhnologiya. 2011. T. 17.
5.
S. 1923. 5.Raschet otrazhayushchei poverkhnosti, fokusiruyushchei izluchenie v proizvol'nuyu krivuyu v prostranstve / K. V. Borisova [i dr.] // Komp'yuternaya optika. 2014. 3. S. 449455.
6.
Litunov, S. N. Konstruirovanie krivolineinogo otrazhatelya / S. N. Litunov, N. V. Revzina, V. Yu. Yurkov // Omskii nauchnyi vestnik. Ser. Pribory, mashiny i tekhnologii. 2015. 1 (137). S. 58.
7.
Pottmann, H. Computational Line Geometry. / H. Pottmann, J. Wallner. Berlin; Heidelberg : Springer Verlag, 2001. 565 p.
8.
Fiedler, W. Cyklographie. Leipzig, 1882. 440 p.
9.
Peternell, M. Rational two-parameter families of spheres and rational / M. Peternell // Journal of Symbolic Computation. 2010. Vol. 45. P. 118.
10.
Panchuk, K. L. Tsiklograficheskaya nachertatel'naya geometriya : monografiya / K. L. Panchuk, N. V. Kaigorodtseva ; Minobrnauki Rossii, OmGTU. Omsk : Izd-vo OmGTU, 2017. 232 s.
11.
Choi, H.I. Mathematical theory of medial axis transform / H. I. Choi, S.W. Choi, H.P. Moon // Pacific J. Math. 1997. Vol.181(1). P. 5788.
12.
Lyubchinov E.V., Geometricheskoe modelirovanie krivolineinykh otrazhatelei / E. V. Lyubchinov, A. S. Niteiskii, K. L. Panchuk // Rossiya molodaya: peredovye tekhnologii v promyshlennost' 2017. 1. S. 254-260.
13.
Pokras, A. M. Besprovodnye linii svyazi / pod red. V. A. Lazarevoi. M. : Svyaz', 1967. 256 s.
14.
Rashevskii, P. K. Kurs differentsial'noi geometrii / P. K. Rashevskii. M. : Gos. izdvo tekhn.teoret. liter., 1956. 420 s.