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AHHoOTanus. Buicoxas cmenens paspeutenus CHUMKOS HOBEPXHOCHIEL 6bICOKO YEHUTNCA MeHCOYHAPOOHBIM COO0UeCcEoM niaHe-
MO02086, 3AUHMEPECOBAHHBLX 8 YYUUEeHUY NOHUMAHUS NPOYECcco8 Popmuposanus nogepxnocmetl nianem. OOHAKO, y4umvleas
pasnuunvle Quauyeckue oepanudenis UHCMpPYMeHmMos8 GU3YaAIU3aAyUL, C6A3AHHBIX, 2I1AGHLIM 00PA30M, C WUPUHOL HOOCH] NPO-
NYCKAHUA KAHAI08 nepedaiu OAHHbLX, HeOOX0OUMO HATIMU KOMNPOMUCC MeHCDY CIMENneHbl0 NPOCMPAHCIMEEHHO20 PA3PeUeHUs U
nponyckHou cnocoornocmuio. O0nako, dadice 6 ciyuae UCHOIb306AHUL ONMUYECKUX KAHALO08 C853U, 6PAO U OyOyujue cucmemol
BU3YATUZAYUU OKAICYMCS CHOCODHBL NOKA3bIEAMb 015 OONLUUHCIMEA NAAHEMAPHbIX Mel, makux kak Mapc, demanu pasmepom
MeHbue, yem 25 cm. B Hacmosiweli cmamve npeonoxicena Ho8as MexHOI02UsL NOMOKOB020 80CCHAHOBNIEHUS CBEPXBbICOKO20 PA3-
peuwenus uzoopasicenuti Gotcha-PDE-TV (GPT), komopas ucnoiv3yem 00noIHUMeAbHY10, MAK HA3bl8AEMYI0 «CYONUKCENbHYION
UHpOpMAYUIO O HeDONLULUX UCKAICEHUAX PACMPA, CEAZAHHYIO C (DIYKMYayuell 3eHUMHO20 y2ila 3peHUs NPU NOCAe008AMENbHbIX
cvemkax. bracooaps smoil memoouxe, ucnoivb308anue U3ObIMOUHOU UHGOPMAyUU, codeprcaujelics 8 HeoOPADOMAHHBIX CHUM-
Kax, N0360JIslen NoebiCUMb CMeneHb paspeuieHus unmo206ulx uzoopasicenuil. B pabome npooemoncmpupoeana onmumaibHOCmyb
UCNONIb306AHUA NPEONA2AEMOU MeXHOI02UU OJI5L 60CCMAHOBIEHUS CBEPXBbICOKO20 PA3PeUeHUs NIAHEMAPHbIX U300PadiceHull Ha
npumepe 06pabomKu OAHHLIX NPOEKMA NOLYYEHUS U300PAdCEHUTl ¢ 8bICOKUM paspeuteHuem (25 cm High Resolution Imaging
Science Experiment — 25 cm HiRISE). B pamkax smoeo skchepumernma Obliu, 8 4aCmMHOCMU, NOLYUeHbl U300padiceHus kpamepd
T'ycesa nymem e2o mnocokpammuozo nepeceuenusi mapcoxooom MER-A (Mars Exploration Rover — MER-A). B pesynibvmame
06pabomku no npednoxHceHHOU mexnoaoeuu 8 u306pax3cenuil, CHAMbLX ¢ paspewenuem 25 cm, yoaiocs 60CCMAHO8UNb CHUMKU
2motl 3016l ¢ pazpeutenuem 5 cm.Oyenka 00CmosepHOCmU 80CCO30AHHBIX U300PAHCEHULL CO CEEPXELICOKUM J-CAHMUMEMPOBHIM
paspewienuem 6vlia NPOBEOEHA ¢ UCNONb308AHUEM CHUMKOS NOBEPXHOCHU, NOLYYEHHbIX M020d JHce HABULAYUOHHOU KAMepOll
(Navcam) mapcoxoda, nymem conocmasieHus OpueHmupos Ha 000ux Habopax cHUMKOB.

Kuarouessle ciioBa: Mapc, Opbumanshoie cuumru, Muocokpamnuwiii npoxoo, HiRISE, Ceepxevicokoe paspewenue, I[lnanemoxoo,
Kocmuueckas nayxa, Kpamep I'ycesa, Ilnanemonoeus, [loeepxnocms nianemol.

Abstract. Higher resolution imaging data of planetary surfaces is considered desirable by the international community of
planetary scientists interested in improving understanding of surface formation processes. However, given various physical
constraints from the imaging instruments through to limited bandwidth of transmission one needs to trade-off spatial resolu-
tion against bandwidth. Even given optical communications, future imaging systems are unlikely to be able to resolve features
smaller than 25 cm on most planetary bodies, such as Mars. In this paper, we propose a novel super-resolution restoration
technique, called Gotcha-PDE-TV (GPT), taking advantage of the non-redundant sub-pixel information contained in multiple
raw orbital images in order to restore higher resolution imagery. We demonstrate optimality of this technique in planetary image
super-resolution restoration with example processing of 8 repeat-pass 25 cm HiRISE images covering the MER-A Spirit rover
traverse in Gusev crater to resolve a 5 cm resolution of the area. We assess the “true” resolution of the 5 cm super-resolution
restored images using contemporaneous rover Navcam imagery on the surface and an inter-comparison of landmarks in the
two sets of imagery.

Keywords: Planetology, Gusev crater, Space Science, Rover, Super-resolution, HiRISE, Repeat-pass, Orbital images, Mars,

Planetary Surface.
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1. Introduction

igher spatial resolution imaging data is almost always considered desirable to the international
community of planetary scientists interested in improving understanding of surface formation
processes. The higher the resolution, the closer the images are to the types of resolution used by
geologists to interpret such processes on Earth.

For example, studying an area on Mars using 12 m panchromatic HRSC (High Resolution Stereo Camera
- http://sci.esa.int/mars-express) allows you to be able to visualise the geological context whilst 6 m CTX
(Context Camera - http://mars.jpl.nasa.gov/mro) images allows you to see important mineralogical and
geomorphological information which you cannot easily see in HRSC and finally for a tiny percentage of the
Martian surface (*1%), 25 cm HiRISE (High Resolution Imaging Science Experiment - http://mars.jpl.nasa.
gov/mro) allows you to see details of surface features such as fine-scale layering. However, the resolution of
25 cmis not high enough to view features such as individual rocks with diameters less than 0.75 m or see the
types of sedimentary features that MSL (Mars Science Laboratory - http://mars.nasa.gov/msl) Curiosity has
found in rover-based imagery. Nevertheless, with various physical constraints from the imaging instruments
themselves, not the least of which is “launch mass” and volume, one needs to be able to trade-off spatial
resolution and bandwidth for any remote sensing system.

This suggests that even with optical communications, future imaging systems are unlikely to be able to
resolve features smaller than 25 cm given constraints on telescope mass and size. This is also the experience
for civilian Earth Observing satellites where the highest spatial resolution is = 30 c¢m from WorldView-3.
However, there exist computational methods which can enhance the resolution from such sensors using
techniques successfully applied to date to surveillance and microscopic imagery over many years called
super-resolution restoration (SRR).

We have developed a novel super-resolution algorithm/pipeline to be able to restore higher resolution
image from the non-redundant sub-pixel information contained in multiple lower resolution raw remotely
sensed images. As we show in this paper we demonstrate that with a stack of HiRISE images we can achieve
up to 5 cm resolution from an orbit altitude of 300 km. With 3D information available from the same sensor
at 25 cm (using shape-from-shading), this now allows us to interpret the surface formation process in a
wholly different manner.

The Gotcha-PDE-TV GPT-SRR technique was developed [16] within the EU-FP7 PRoViDE (http://provide-
space.eu) project to obtain improved scientific understanding of the Martian surface using a combination of
orbital and rover imagery and in future to better support several mission critical engineering rover operations,
such as landing site selection, path planning, and optical rover localisation. The technique is unique, since
(a) we not only use sub-pixel information from small translational shifts but also restore pixels on an ortho-
rectified grid from different (comparably large) viewing angles, and are therefore able to achieve a 2-5x
enhancement in resolution; (b) we use a novel segmentation-based approach to restore different features
separately; (c) apply a state of the art Gotcha matcher and PDE-TV regularization to provide accurate and
robust (noise resistant) restoration. GPT-SRR is applicable whenever there exist sub-pixel differences and
there are comparably large view zenith angle differences, which is always the case in orbital images, between
multiple image acquisitions even if taken at different times with different solar illumination conditions. Each
view is subjected to different atmospheric blurring and scattering but aslong as the atmospheric transparency
is sufficiently high, Gotcha-PDE-TV SRR can be applied.

This paper will describe the new Gotcha-PDE-TV algorithm and investigate its current performance.
The technique will be demonstrated with initial experiments performed using 8 repeat-pass 25 cm HiRISE
images covering the MER-A (Mars Exploration Rover - http://mars.nasa.gov/mer) Spirit rover traverse in
Gusev crater in order to resolve a 5 cm Super-resolution restoration (SRR) image of the area. This set of super-
resolution images around the MER-A and MSL track is now being analyzed by colleagues on the MER& MSL
science teams in association with the rover imagery in order to try to quantify what additional information
on Martian surface processes can be derived given the 5 times higher spatial resolution compared to HiRISE.
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This resolution is comparable to rover imagery at a stand-off range of 5 m from the rover cameras but in our
case this high spatial resolution (z 5-10 Cm) can be simulated from many hundreds of kilometers away
from the rover traverse. This means that in future, more detailed planetary exploration could be performed
from orbit, where there are no autonomous rover vehicles available, by ensuring that there are many repeat
images of the same surface area.

2. Context and reviews

SRR techniques attempt to restore higher resolution images from non-redundant information contained
in multiple lower resolution images. The basic idea is that each lower resolution image that is captured is a
decimated, aliased version of the true scene. SRR is used to retrieve the most probable “true scene” that can
be extracted from these lower resolution images. SRR techniques are applicable if there are repeat images
taken from (slightly) different positions or viewing angles so that differences in alignment between the
camera and the surface exists. Such differences of alignment will introduce additional sub-pixel information
of the true scene.

Early work on SRR in computer vision was mainly achieved by exploring the shift and aliasing properties
in the frequency domain [18], but these techniques are restricted in the observation/degradation models they
can handle. Nowadays, SRR is mostly performed in the spatial domain, mainly for its flexibility to model all
the different kinds of image degradations encountered. The naive spatial domain approach is interpolation-
restoration, which is a non-iterative forward approach that achieves non-uniform interpolation on pre-
registered low-resolution (LR) images. Forward interpolation based approaches do not guarantee optimality
of the estimation. Local registration error can easily propagate and will cause gridding artifacts. Unlike
the interpolation-based approaches, statistical approaches relate the sub-pixel information stochastically
toward optimal reconstruction. SRR image and registration parameters of LR inputs can both be considered
as stochastic variables. The inverse process to find out the most probable true scene can be interpreted
within a full Bayesian framework. In order to resolve the Bayesian formulation, many works [13, 8, 2] have
followed the Maximum Likelihood (ML) estimator and Maximum a Posteriori (MAP) approaches. To resolve
ML estimator function requires expensive manipulation of high dimension matrices and therefore a Back-
Projection Function (BPF) is normally applied to simplify the large set of sparse linear equations [7]. The
ML estimator without regularization is usually very sensitive to noise and registration parameters of LR
inputs [2]. Therefore current state of the art SRR techniques follow the MAP approaches, but vary in the
observation models and priors. There are three commonly used priors for solving the MAP equation of SRR.
The first one is the Gaussian Markov Random Field (GMRF) [5], which takes the likelihood of the prior in
the form of a symmetric positive matrix of the derivative operator of LR images, balancing local and spatial
smoothness. A common criticism of GMRF is its disadvantage in preserving sharp edges in SRR. The second
approach is the Huber MRF (HMRF), which resolves local smoothness whilst preserving sharp edges using
the Huber function [13]. The third generic image prior is through Total Variation (TV), which is a commonly
used image de-noising technique. TV calculates the total amount of change via a Laplacian operator. More
recent works in SRR employ the TV as a regularization prior. [3] introduced bilateral TV (BTV) for reduced
computational complexity and improved robustness. [1] proposed an improved regularization method based
on the coupling of fourth order Partial Differential Equation (PDE) and a special shock filter to remove the
jittering artifacts from TV.

In this paper, we propose a further optimized TV algorithm, called Gotcha-PDE-TV, based on an unique
adaptive least-squares correlation (ALSC) matcher called P-Gotcha described in [14] which has been
successfully applied to topographic mapping and co-registration of multi-view imagery from HRSC, CTX and
HiRISE in [9] http://www.sciencedirect.com/science/article/pii/S0032063315003591 - bib9. This paper will
demonstrate optimality of the Gotcha-PDE-TV SRR technique by applying the precise sub-pixel motion prior
in MAP reconstruction focusing of orbital images of Mars. For computational reasons, we do not model all
the observation parameters such as surface illumination, surface albedo, and camera specifications. Instead
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for Mars images, we model the precise camera orientation/motion, simplified optical blurring effects, down-
sampling effects, and noise.

3. Algorithm and methods

3.1. MAP SRR model

In a generic SRR model (1), where Yk denotes the k-th LR image, X denotes the HR image. Fk, Hk, Dk, and
Vk denote the observation parameters, where geometric motion information, optical blurring effect, down-
sampling effect, and noise encoded for the k-th LR frame, respectively.

Y=DHFX+V, (1)
where k=1,2,....K.
Let M denote the observation parameters among LR inputs. The HR image and observation parameters

can both be regarded as stochastic variables and hence the SRR model can be interpreted within the full
Bayesian framework (2).

Pr(Y | X, M)Pr(X, M)

X =argmax Pr(X | Y) =argmax Pr(X, M |Y) = arg max )
X X X Pr(Y)
Since X and M are independent:
X:argmaxPr(Z|X’M)Pr(X)Pr(M). 3)
X Pr(Y)

Pr(X) is the prior term on the desired HR image and Pr(M) is a prior term on the geometric motion vec-
tor. Because any pixel value Xij in the reconstruction is highly correlated with their neighbours, we assume
Pr(Y | X, M) is normally distributed. The probability of the observed pixel value in the LR image is given
in (4) with a zero mean and standard deviation o.

Pr(Y | X, M)ove "2 I 4)

Atthe current stage, we only deal with a single-sensor (e.g. HiRISE) with LR images captured over a period
of time. The relative motion for each pixel is calculated to sub-pixel accuracy with respect to an orthorecti-
fied image (ORI). Therefore we assume M is given/calculated beforehand, (4) can be simplified to (5), where
A(X) is the regularization cost represented by a non-negative potential function used to define Pr(X) and A
is aregularization parameter for absorbing the variance of the similarity and regularization costs.

X =argmax Pr(Y | X, M)Pr(X) =argmin ﬂZ—MXHZ +XA(X)}>. ®)
X X

In TV regularization, A(X) is measured by the I, norm of the magnitude of the gradient to preserve
edges and corners while encouraging local smoothness. Where in (6), V is a gradient operator that can be
approximated by Laplacian operators.

4y, () =]vx],. ©
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Merging (5); (6), the MAP equation can be represented as (7).
x =argmin ¥ - x| +2.|vx], } %)
X

By applying a 4th order PDE (8) to resolve the minimization problem, the staircase effect in TV can be
minimised.

2 '
ot |V, X

where p>0, such that:

1/2

- @VX [+u’) ©)

1/2

[Vx|=|v,X]|=(x:+X; +1)

, approaching zero.

In order to prevent the denominator of PDE, i.e. HVX|

3.2. Reconstruction algorithm

To resolve the MAP equation from Eq. (7) requires the “true” value for observation parameter, M. In
our method, we use a sub-pixel motion map to describe the geometrical correlation for each individual
pixel between LR images and a reference ORI for the same scene so that each LR pixel can be fitted onto an
interpolated HR grid (for desired resolution scale factor L) as a starting estimation for the steepest descent
iteration of the minimisation problem of Eq. (8).

In order to get the motion prior close enough to the true value which is essential for the MAP solution,
we use a progressively weighted ALSC/region growing algorithm to produce sub-pixel 2-channel (dx and dy)
projection maps for each LR image with respect to the reference ORI. Initial tie-points (TPs) are determined
using feature points derived from Scaled Invariant Feature Transform (SIFT). General feature based
registration methods assume that image features detected independently on each image are always correct.
The repeatability of the detection would be deteriorated when a significant distortion is involved in a
matching process. Slight mismatches could have a large impact on constructing the initial High Resolution
(HR) grid. Therefore, we developed a Mutual Shape Adapted SIFT (MSA-SIFT) algorithm that uses forward
and backward ALSC to iteratively search for a correct TP by adjusting the shape of the correlation matching
window as shown in Eq. (10), where Xi is an ALSC searching window starting from the origin of the initial
TPs. The window can be translated and/or skewed as represented by A.

. 2
TP, oy =argmin Z”XiLR — AXI.OH” . (10)
X
The algorithm of MSA-SIFT consists of the following:

(i) Detection of a scale invariant feature and its scale.

(ii) Iterative update of a circular scale invariant region to an elliptical region using a second moment
matrix.

(iii) Initial normalisation using the result from ii.

(iv) Refinement of the result using forward and backward ALSC on both images.

(v) Going back to (iv) until it converges (optional).

(vi) Go back to (ii) until convergence (optional).

TP, - have sub-pixel accuracy and are considered as seed points to iteratively adjust transformation

and move to the neighbouring points in the P-Gotcha algorithm as described in Eq. (9). Subjective constraints,
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e.g. quality, error, are determined to obtain a motion map for each LR image with respect to an ORI. Each
pixel value (dx, dy) in the motion map represents the x and y vector pointing to the same interpolated ORI
grid with scale factor L. Other observation parameters (Hk, Dk, and Vk) for a LR image are projected by the
geometric motion parameter (Fk) from the motion map to find the minimum squared error (MSE).

In a steepest descent approach for the minimization problem we use Eq. (12) to resolve the PDE
decomposed MAP Eq. (11).

ox _ v x)
5_—BFTHTDT (FHDX —Y)+V? W VX (11)
T 7T N T ”VZXH'
X =X, =y =BEF H DD (FH DX, =Y )+ V’ ||v2—X ViX, o (12)
W

where y is the step size in the direction of the gradient, FT, HT, and DT is the transpose of the projection
vector, Point Spread Function (PSF) thatis assumed to be a small Gaussian kernel with standard deviation o to
be 1, and a down-sampling operator, respectively for the k-th LR image.

Most MAP SRR approaches in computer vision assume a simple projection motion prior to a LR image
sequence. However, this is not the case in planetary orbital image datasets where motion vectors can vary
dramatically due to camera viewing angle differences. We use a novel back projection scheme that reconstructs
different areas (S) from the LR images separately with respect to the segmentation from the tiled motion
vectors with different levels of pixel distance (7) when compared with the reference ORI, such that:

TS = Zk”Dmax _Dmin

1<T. (13)

D=(d’+d)". (14)

where D is the distance of the motion vectors within an area S, such that 7§ is less than a threshold, T.
Each LR measurement Yk in Eq. (12) within an area Si will be compared to the degraded estimation of HR
frame Xn in the n -th steepest descent iteration separately. In such an approach, any area with more features
(small rocks, edges) will be divided into more reconstruction tiles in order to preserve the features, whilst flat
featureless areas will be reconstructed jointly to reduce noise and speckle effect from a PDE. In other words,
neighbouring correlations have less effect on the fine detail of features but have more effect on flat feature-
less areas. In addition, with this tiled back projection scheme, the neighbouring pixels outside the defined
area (tile) will not contribute to the SRR within the defined area (tile) according to the normal distribution
assumption of Pr(Y|X,M) in Eq. (4). For flat areas where LR pixels are over-determined, a PSF with larger o is
used. For highly featured areas where LR pixels are under-determined, a PSF with a smaller o is used.

3.3. Method

The currentimplementation of the proposed Gotcha-PDE-TV SRR algorithm is shown schematically in Fig.
1. We take roughly aligned overlapping LR images (K) and an ORI (if available) as input to estimate the HR
image with a given scaling factor (L).
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Fig. 1. Flow diagram of the proposed Gotcha-PDE-TV processing chain.

The processing pipeline (see Fig. 1) starts with a scale invariant feature detection and matching process
to predict TPs for each LR images with respect to the reference frame. Then an iterative MSA method
is performed based on the initial TPs to further improve the sub-pixel accuracy followed by a RANSAC
process for outlier removal. These optimised TPs are then used with a pyramidal version of Gotcha as seed
points for an ALSC/region growing process until most pixels in the LR images find their optimal sub-pixel
correspondence with respect to the reference frame. These sub-pixel correspondences are collected to form
(K) 2-channel motion maps with sub-pixel x and y translation vector encoded. LR pixels, which do not match
with any position in the reference grid, will be removed from the K-dimensional LR matrix. If a position in
the HR grid does not have any corresponding motion vector from all (K) motion maps, this HR pixel will be
propagated by its neighbouring HR pixels.

The motion maps provide the initial degradation information of F in the similarity measurement term
of the MAP estimation. LR images and the reference ORI are resized by the defined scaling factor L and are
segmented to (S) tiles according to a given threshold (T) of the maximum difference of the magnitude of the
distance of the motion vectors.

The next step is resolving the MAP equation using the following method:

(i) Forthe same area, each tile (1) of each LR image (k) is projected with motion vector (F), convolved with
PSF (H) which is assumed to be a small Gaussian kernel with various standard deviation (¢) according
to the size of segments (S), down-sampled (D) with the defined scaling factor (L) and compared with
its estimated HR image tile sequentially.
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(ii) Go backto (i) for the next image (k) until all images converge.

(iii) Add the transposed difference vector (FT, HT, DT) for the image tile (k, 7).

(iv) Add the smoothness term and decompose the TV regularization term with the 4th order PDE.
(v) Go back to (i) for the next steepest descent iteration until it converges.

(vi) Collect the HR result for this tile (i) and go back to (i) for the next tile (7,,) until all segments (S)
converge.

(vii) Collect the results for all HR segments (S) and reconstruct the full HR grid.

(viii) Finally a series of post-processing is performed based on the HR reconstruction including noise filtering
and deblurring.

This implementation includes several tiling and pyramidal approaches in order to decrease the processing
time. The potential of parallel processing for the ALSC/region growing, tiled back projection and regularization
isindicated in the above processing chain (see Fig. 1). A porting of the currentimplementation to a network of
high speed Graphics Processing Unit (GPU) processor should be feasible as there are existing implementations
[11, 6, 12] for most of the core parts, i.e. seeded Region Growing, SIFT, TV) to port onto a GPU. If we are able
to achieve order(s) of magnitude increase from parallel processing in throughput then we will eventually
be able to process full HiRISE scenes. Consequently, our ability will be enhanced to study very fine-scale
processes from Martian surfaces such as gulley and RSL formation and address much better the question as
to whether these originate with liquid water. Currently, HiRISE has acquired, up to the end of Mars Year 31,
around 400 areas (0.02% of the ~ 145 Msq. km). Martian surface area assuming a typical HiRISE scene size
of 6x12 km) with four or more repeat coverages [15].

4. Experimental results

Initial experiments have been performed using the elaborated Gotcha-PDE-TV algorithm for 8 repeat-pass
25 cm HiRISE images listed in Table 1 covering the MER-A Spirit rover traverse in Gusev Crater to resolve a
5 cm SRimage of the area as shown in Fig. 2 and the zoomed-in view for randomly picked places from Sol 524
to Sol 580 in Fig. 14 in comparison with 25 cm HiRISE image for the same area shown in Fig. 13.

Table 1
LR inputs of 8 repeat-pass HiRISE images

ID Acquisition Date
LR1 ESP-011943-1650 12 February 2009
LR2 ESP-016677-1650 15 February 2010
LR3 ESP-019301-1650 8 September 2010
LR4 ESP-025393-1650 27 December 2011
LR5 ESP-025815-1655 29 January 2012
LR6 PSP-001513-1655** 22 November 2006
LR7 PSP-001777-1650%* 12 December 2006
LR8 PSP-010097-1655 21 September 2008
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Fig. 2. MER-A SRR mosaic covering the whole rover traverse shown in ArcGIS®.

Owing to the current very lengthy computation times of each SRR image tile (12-24 h depending on
different processing parameters, for a 2048x1024 tile with 8 input LR images running on a 16 core, 8 GB
RAM computer), it is not yet feasible to apply SRR to a full HiRISE image. Therefore, a set of smaller image
tiles has been processed along the MER-A rover track and their coverage and the corresponding tiles are
shown in Fig. 2.

The reference ORI for the SRR is created using the left image of the stereo pair PSP-001513-1655 ,,and
PSP-001777-1650 , described in [17] http://www.sciencedirect.com/science/article/pii/S0032063315003591
- bib18. A comparison between one of the LR images and HR images can be seen side by side for 3 randomly
picked places (A, B, C) within the Homeplate area SRR view in Fig. 3 and are shown individually in Fig. 4,
Fig. 5; Fig. 6.

Fig. 4 shows that the proposed SRR algorithm is able to bring outindividual rocks (size < 75 cm), which are
not clear or unrecognizable in the original HiRISE image. This is essential for rock detection/classification and
examining surface rock distribution for understanding the surface roughness. From a better understanding
of the rock distribution, an optimal path planning can be calculated to better support the engineering teams
of future surface missions. For the most recent rover, [4] showed down-selection of putative landing sites
had to meet the criterion that rock height of less than 0.5% probability of at least one < 0.55 m high rock in
a4 m?area, equivalent to a rock abundance of <8%.
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Fig. 3. A portion of the 5 cm MER-A SRR image mosaic around the Homeplate area, the most south-east tile
shown in Fig. 2, showing locations of the 3 selected areas shown at higher resolution in Fig. 4, Fig. 5; Fig. 6.
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Fig. 4. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR image (right) for area (A).
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Fig. 5 shows a portion of SRR of mixed features including rocks as small as 10-50 cm, dunes, and hill
slopes. This provides important knowledge on surface morphology and deposition study. Such enhanced
structural/linear features will also improve ground-to-orbit data fusion, i.e. Navcam to HiRISE co-registration
as described in [17], which will significantly improve an optimal rover localisation.

Fig. 6 shows the optimality of the SRR algorithm in preserving sharp edges. The restoration of sharper
edges is important for studying sedimentary deposition and surface change monitoring.

Furthermore, we are able to enhance and composite rover tracks that appeared in different HiRISE
images by using different parameters for each LR image depending on the different desired area, as shown
in Fig. 7. In comparison of the enhanced and composited rover track with the rover imagery shown in Fig. 8,
we are able to perform high accuracy rover localisation as well as validate the spatial resolution, in this case
by measuring the outer-wheel and inner-wheel spacing shown in Fig. 9. The maximum difference between
the rover track outer spacing from SRR image and Navcam orthorectified mosaic is within 8 cm (1.6 pixels
in the SRR image), which is subject to Navcam orthorectification distortion and possible Martian surface
change over a 5 year long period.

In addition, SRR imagery is applicable to improve knowledge of rock size distributions, which is critical
for understanding the geological and geomorphic history of a surface [4] as well as the potential navigability
of the surface. Fig. 10 shows thatin 25 cm HiRISE images, rocks less than 150 cm diameter are barely visible
and are hard to detect, whereas in 5 cm SRR, rocks larger than 30 cm diameter are fully resolved shown in
Fig. 12.

Fig. 5. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR image (right) for area (B).
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Fig. 6. Comparison between 25 cm HiRISE image (left) and 5 cm SRR image (right) for area (C).
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Fig. 7. Comparison between 25 cm HiRISE ORI image (left) and 5 cm SRR
image (right) showing composited enhanced rover tracks.
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Super-resolution restoration JPL RDR: Vertical projected Naveam mosaic

Fig. 8. Comparison between rover track compositing in SRR image and JPL vertical projected Navcam
RDR (2 nnd95 ilfawvrtz0p17251000 m2 and 2 nnd54 ilfavvrtqwpl6051000 m2) in Homeplate area.

For an area within the HiRISE image and a corresponding SRR image around an impact crater near the
MER-A traverse Sol 150 and 151, rocks are automatically detected based on the Mean-shift segmentation
and Support Vector Machine (SVM) classifier [16]. For rocks with diameters larger than 150 cm there are
22 detected from the original HiRISE image and only 1 rock detected with a diameter between 50 cm and
150 cm. On the other hand, in the SRR image, Fig. 12 shows that there were 33 rocks with diameters larger
than 150 cm, 111 rocks with diameters between 50 cm and 150 cm, and 9 rocks with diameters between
30 cm and 50 cm. We have also compared the rock detection results, shown in Fig. 11, on the enlarged
(bilinear interpolation) and high-pass filtered HiRISE image. Although some rocks with diameters larger
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Fig. 9. Comparison between specially enhanced rover track composition in SRR
image and orthorectified rover Navcam mosaic in Homeplate area.
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Fig. 10. Automatically detected rocks (labeled green) of 25 cm HiRISE image (PSP-001513-1655)
with 20 pixel grid (5 m) around an impact crater close to MER-A traverse
at ~ (175.51045 deg, - 14.58461 deg).

than 150 cm were able to be individually detected (viz. they were detected as a single rock in the original
HiRISE image) and also some blurred rocks with diameters between 50 cm and 150 cm have been enhanced,
there were still a very large number of rocks which cannot be resolved by simple high-pass filtering. Table
2 summarises these results showing that there are large numbers of rocks, which are not clear enough for
automated detection/classification or manual recognition in the original HiRISE image. However, with the
SRR, a much greater number of rocks can be detected and therefore provide stronger evidence to support
an application such as the selection of a future landing site.

Table 2
Accumulated number of rocks in HiRISE and SRR image
Diameter of rocks Num of rocks (HiRISE) | Num of rocks (filtered) Num of rocks (SRR)
D >150 cm 22 25 33
D >50 cm 23 31 144
D 2>30 cm 23 31 153

More SRR experiments and processing have also been performed (not shown here) for MER-B Victoria
Crater, Endurance Crater, Santa-Maria Crater and the entire MSL rover traverse to die. Some of the SRR
results have been integrated into an interactive Web-GIS system developed by partners at the University of
Nottingham within the PRoViDE project, called PRoGISZ for visualisation in a multi-resolution co-registered
context using SRR image, HiRISE, CTX and HRSC which is designed to serve public outreach and educational
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Fig. 11. Automatically detected rocks (labeled green) of high-pass filtered HiRISE image (PSP-001513-1655) with
20 pixel grid (1 m) around the same impact crater close to MER-A traverse at ~ (175.51045 deg, - 14.58461 deg).

Fig. 12. Automatically detected rocks (labeled green) of 5 cm SRR image with 20 pixel grid (1 m)
around the same impact crater close to MER-A traverse at ~ (175.51045 deg, - 14.58461 deg).

purposes [10]. The greatest single limitation to the existing technique is the slow computational speed,
in addition to ensuring that there are sufficient repeat images (5-10) of sufficient clarity/atmospheric
transparency.
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Fig. 13. A portion of 25 cm MER-A HIRISE image with rover traverse from Sol 524 to Sol 580.

5. Conclusions and future work

Any planetary geologist or geo-morphologist is likely to have a strong interest in exploiting the highest
possible resolution 3D image dataset. SRR will assist them greatly in formulating and testing hypotheses
about planetary surface processes, as they will be able to apply their knowledge and understanding based on
their terrestrial fieldwork. The high spatial resolution imaging data is an active driver for many applications,
such as studying surface processes, which are not visible or not clear enough via known low-resolution data.
Geologists can achieve more reliable classification and inference from super-resolution restored features
such as rocks, sedimentary layers, cliff cross-cutting profile, etc.

Fig. 14. A portion of 5 cm MER-A SRR image mosaic from 8 repeat-pass HiRISE
images showing the same place from Sol 524 to Sol 580.
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This paper describes our novel SRR algorithm, called Gotcha-PDE-TV (GPT-SRR), to address the recon-
struction of fine-scale details from multi-frame repeat-pass orbital imagery. We show use of an innovative
tiled MAP approach to restore different feature from LR images. We exploit the accurate sub-pixel motion
estimation using Gotcha and robust PDE based TV regularization process. The technique has been demon-
strated here with experiments on 8 overlapping 25 cm MRO HiRISE images covering the MER-A Spirit rover
traverse to resolve 5 times higher spatial resolution. We do not yet know, and are not able to test, owing to
the huge computational time, how many images yield what resolution but determined this heuristically at
the 5 cm shown for the 8 input 25 cm images.

Gotcha-PDE-TV SRR is applicable whenever there exist sub-pixel differences, which is always likely to
be the case for repeat orbital images, even if taken at different times with different viewing (zenith) and
solar illumination (azimuth) conditions. We are not able to test this with different solar zenith as MRO is in
a fixed repeat orbit. Each view is subject to different atmospheric blurring and scattering but as long as the
atmospheric transparency is sufficiently high (clear), Gotcha-PDE-TV GPT-SRR can be applied.

We aim to process all available image datasets in future where we have repeated multi-view imagery
starting with HiRISE first and then apply these techniques to HRSC, CTX, HiRISE, THEMIS, MOC and Viking
Orbiter into geo-referenced SR mapped datasets after the proposed GPU porting. We also plan to apply such
techniques to the retrieval of 3D heights where we have multiple stereo-pairs available. These geo-referenced
SRR datasets will greatly support the geological and morphological analysis and monitoring of Martian sur-
face processes especially change detection features in future planetary research. They can also be applied
to landing site selection to spot surfaces which may cause difficulties for any future rover as well as provide
a much better dataset for subsequent geological and geomorphological analysis.

We believe that the technology developed here has huge potential, not only to other Solar System solid
earth targets butalso to the design of future missions, which will still be severely limited by telecommunica-
tions bandwidth but also by light travel time. Transmitting back long video sequences of LR imagery, which
could then be employed for SRR, could result in substantially higher scientific returns from orbital missions.
It may also be applied to space telescopic images of objects outside our Solar System such as exoplanets.
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