Reference:
Polyakova A.V..
3D-technologies in forensic examination
// Legal Studies. – 2023. – № 7.
– P. 117-125.
DOI: 10.25136/2409-7136.2023.7.43654.
DOI: 10.25136/2409-7136.2023.7.43654
Read the article
Abstract: One of the promising directions of digitalisation of forensic examination is the introduction of 3D technologies for the creation and study of digital three-dimensional models of forensic objects. The purpose of this study is to systematise data on existing technologies for obtaining three-dimensional models of forensic objects, as well as to determine the main areas of their application in forensic examination. The author analysed foreign and domestic experience of 3D-technologies application in this field. The objects of this study are methods of building three-dimensional models, as well as their technical and software, which can be used to solve the problems of forensic examination. The analysis of the main methods of obtaining 3D-models allowed the author to identify the main directions of implementation of 3D-technologies in forensic science. First of all, it is the fixation and preservation of information about traces, objects and things of an accident scene, which can later become the objects of forensic examinations. With the help of three-dimensional modelling methods it is possible to solve identification and diagnostic expert tasks, integrate the results of expert studies and other investigative actions into a single reconstruction. Based on these directions, scientific research in the field of application of three-dimensional technologies can be continued, in addition, the accumulation of empirical material that can be used in the practice of production of various types of forensic examination will continue.
Keywords: crime scene environment, visualisation, modelling, 3D reconstruction, CAD, photogrammetry, 3D model, 3D printing, 3D scanning, 3D technologies
References:
Kokin, A.V. (2021). Forensic Expertise in the Era of the Fourth Industrial Revolution (Industry 4.0). Theory and Practice of Forensic Expertise, 16, 29-36.
Buck U., Naether S., Räss B., Jackowski C., & Thali M.J. (2013). Accident or homicide-virtual crime scene reconstruction using 3D methods. Forensic science international, 225, 1/3, 75–84.
Bolliger, M. J., Buck, U., Thali, M. J., & Bolliger, S. A. (2012). Reconstruction and 3D visualisation based on objective real 3D based documentation. Forensic science, medicine, and pathology, 8(3), 208–217.
Bornik, A., Urschler, M., Schmalstieg, D., Bischof, H., Krauskopf, A., Schwark, T., Scheurer, E., & Yen, K. (2018). Integrated computer-aided forensic case analysis, presentation, and documentation based on multimodal 3D data. Forensic science international, 287, 12–24.
Aksenov A.Yu. (2015). Модели и методы обработки и представления сложных пространственных объектов [M