Natural resources of the Arctic and Antarctica
Reference:
Tao, D., Alekseev , A.G., Brushkov, A.V. (2025). Long-term creep of frozen soils in multi-year tests. Arctic and Antarctica, 2, 1–14. https://doi.org/10.7256/2453-8922.2025.2.73912
Abstract:
This study focuses on the long-term creep behavior of frozen saline soils (sand, silty, loam) under constant temperature and mechanical loading conditions. The frozen soil samples were collected in situ from modern marine and alluvial Quaternary deposits on the Yamal Peninsula. Special attention is given to the temporal deformation dynamics under uniaxial compression. The research aims to identify patterns in deformation rate changes, analyze both primary (transient) and secondary (steady-state) creep stages, and compare experimental results with theoretical models of aging, hardening, and flow behavior. Experiments were conducted during 9 years in the underground laboratory of the Amderma Permafrost Station at a depth of 14 meters, which enabled investigation into the long-term mechanical behavior of frozen soils. The findings are of significant importance for predicting the stability of building foundations in permafrost regions and for preventing structural failures. The research method involved prolonged laboratory testing of frozen soil specimens using uniaxial compression under constant temperature and stress conditions. The scientific novelty of this study lies in the unprecedented duration of the experiments (to 9 years), which far exceeds the time frames of most previously conducted creep tests. In most existing studies, the maximum duration of creep testing for frozen soils in various conditions did not exceed several months. For the first time over such an extended time span, it has been shown that sands and silty exhibit a transition from unstable to stable deformation stages, whereas loams demonstrate nonlinear behavior, presumably due to crack formation and internal structural changes. The application of mathematical modeling enabled refinement of deformation prediction parameters, which is of practical significance for engineering calculations. The obtained results enhance the reliability of foundation stability assessments and provide a scientific basis for the design of buildings and infrastructure in permafrost regions.
Keywords:
structure, admerminskaya underground laboratory, engineering geocryology, permafrost, deformation, long-term testing, theory, uniaxial compression, creep of frozen soils, damped creep
Engineering Geology of Cold Plains and Mountain Regions
Reference:
Kachor, O.L., Parshin, A.V., Trusova, V.V., Kurina, A.V., Ikramov, Z.L. (2025). Assessment of air quality in the area of the future ecotechnopark "Vostok" (Usolye-Sibirskoye, Irkutsk region) based on snow geochemical survey data. Arctic and Antarctica, 2, 15–34. https://doi.org/10.7256/2453-8922.2025.2.73789
Abstract:
The subject of the work is the development of a methodology for snow geochemical research for effective express assessment of air quality under technogenic influence from various industrial sources that shape complex environmental pollution, as well as the creation of an informational and cartographic basis for further ecological monitoring of a significant area in the Baikal region. By examining a detailed assessment of atmospheric pollution in the area of the construction of the "Vostochniy" ecotechnopark, a comparative analysis of the informativeness of cartograms showing the distribution of pollutants in snow water and solid residue is conducted. The surveyed area contains various sources of technogenic impact, ranging from metallurgical enterprises to heat energy generation facilities; thus, this case excellently illustrates the advantages of the snow geochemical survey method as the most representative way to assess atmospheric pollution in the tasks of ecological monitoring in "winter" regions, mitigating ecological risks from new mining projects in the northern part of Eurasia, and controlling industrial activities in cities with a persistent snow cover. Optimizing this type of geoecological research is a highly relevant task. Seasonal snow samples were collected, and the snow water was melted and filtered to separate soluble and insoluble forms of pollutants. A chemical analysis of the snow water and solid residue was performed. Element associations corresponding to various sources of impacts were determined. Cartographic materials characterizing the distribution of pollutants across the area were presented. The research allows for a clear comparison of results obtained using the traditional, yet costly, methodology for analyzing snow water through precision chemical-analytical methods such as ICP-AES/MS, and through an express and inexpensive methodology for analyzing solid residue using non-destructive analysis (XRF). It was shown that the latter method is also quite informative, allowing for a detailed characterization of the geoecological situation over a significant area with minimal costs, identifying and mapping zones with abnormally technogenic conditions in the atmosphere. As a result, the most detailed spatial characterization of air pollution in the area of Usolye-Sibirskoye is provided, which is a constant focus of attention from state ecological control authorities as a rehabilitated site of accumulated environmental damage and simultaneously a promising production site. The described methodological approaches are applicable to a wide range of geoecological situations in regions with prolonged winters.
Keywords:
Usolye-Sibirskoye, mercury, assessment of background conditions, snow cover, heavy metals, environmental monitoring, snow geochemical survey, air pollution, air quality, accumulated harm objects