Рус Eng During last 365 days Approved articles: 2101,   Articles in work: 266 Declined articles: 888 
Library
Articles and journals | Tariffs | Payments | Your profile

Банокин П.И., Ефремов А.А., Лунева Е.Е., Кочегурова Е.А. A study of the applicability of LSTM recurrent networks in the task of searching for social network experts

Published in journal "Программные системы и вычислительные методы", 2017-4 , pages 53-60.

Resume: The article explores the applicability of long short-term memory (LSTM) recurrent networks for the binary classification of text messages of the social network Twitter. A three-stage classification process has been designed, allowing a separate analysis of pictograms and verification of the text for neutrality. The accuracy of the classification of the emotional polarity of text messages using the LSTM network and vector representations of words was verified. The percentage of coincidences of vector representations of words with a training set of data is determined, which makes it possible to obtain an acceptable classification accuracy. The estimation of the learning speed of the LSTM network and the use of memory was carried out. To solve the task of classifying text messages, methods of processing natural language and machine learning using precedents are applied. The algorithmic base for processing text data from social networks, obtained as a result of the application of LSTM neural networks, has been optimized. The novelty of the proposed solution method is due to the implementation of pre-processing of messages, which allows to improve the accuracy of classification, and the use of the neural network configuration taking into account the specifics of text data of social networks.

Keywords: Twitter, word embeddings, social networks, LSTM networks, sentiment analysis, natural language processing, recurrent neural networks, text data preprocessing, reccurent network, binary classification

DOI: 10.7256/1811-9018.2013.6.6976

This article is unavailable for unregistered users. Click to login or register

Bibliography:
Perkins J. Python 3 Text Processing with NLTK 3 Cookbook.-Birmingham, UK: Packt Publishing Ltd, 2014 .-304 с.
Лунева Е.Е., Ефремов А.А., Банокин П.И. Способ оценки эмоций пользователей с использованием нечеткой логики на примере социальной сети Twitter // Системы управления и информационные технологии. – Воронеж, Изд-во ООО «Научное издательство «Научная книга», 2015.-No1.1(59), с. 157-162.
The Stanford Parser: A statistical parser // The Stanford Natural Language Processing Group URL: https://nlp.stanford.edu/software/lex-parser.shtml (дата обращения: 10.10.2017).
Mozetic I, Grcar M, Smailovic J. . Perc M. Multilingual Twitter Sentiment Classification: The Role of Human Annotators // PLoS ONE.-2016.-№11(5).
Kim Y. Convolutional Neural Networks for Sentence Classification // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.-Stroudsburg, USA: Association for Computational Linguistics, 2014.-С. 1746-1752.
Dos Santos C. N., Gatti M. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts //COLING. – 2014. – С. 69-78.
Zhang X., Zhao J., LeCun Y. Character-level Convolutional Networks for Text Classification // Advances in Neural Information Processing Systems.-NY, USA: Curran Associates, 2015.-С. 649-658.
GloVe: Global Vectors for Word Representation // Stanford NLP URL: https://nlp.stanford.edu/projects/glove/ (дата обращения: 10.10.2017).
FastText-Library for fast text representation and classification // GitHub URL: https://github.com/facebookresearch/fastText (дата обращения: 10.10.2017)
Mikolov T., Sutskever I., Chen K., Corrado G., Dean J., Distributed representations of words and phrases and their compositionality // Advances in neural information processing systems.-2013.-№26.-С. 3111-3119.
Johnson R., Zhang T. Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level // arXiv URL: https://arxiv.org/abs/1609.00718 (дата обращения: 10.10.2017).
Baccianella S., Esuli A., Sebastiani F. SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining. // Proceedings of the International Conference on Language Resources and Evaluation.-Valletta, Malta: European Language Resources Association (ELRA, 2010.
Twitter Sentiment Analysis Training Corpus // Thinkbook URL: http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/ (дата обращения: 10.10.2017).
Perform sentiment analysis with LSTMs, using TensorFlow // O'Reilly Media URL: Perform sentiment analysis with LSTMs, using TensorFlow (дата обращения: 16.10.2017).
Sak H., Senior A., Beaufays F. Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling // INTERSPEECH-2014.-Singapore: ISC, 2014.-С. 338-342.
Hong J., Fang M. Sentiment analysis with deeply learned distributed representations of variable length texts: технический отчет. Stanford, USA: Stanford University, 2015. 9 c

Correct link to this article:
just copy this link to clipboard